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Mechanistic home range analysis (MHRA) is a highly effective tool for

understanding spacing patterns of animal populations. It has hitherto

focused on populations where animals defend their territories by communi-

cating indirectly, e.g. via scent marks. However, many animal populations

defend their territories using direct interactions, such as ritualized aggres-

sion. To enable application of MHRA to such populations, we construct a

model of direct territorial interactions, using linear stability analysis and

energy methods to understand when territorial patterns may form. We

show that spatial memory of past interactions is vital for pattern formation,

as is memory of ‘safe’ places, where the animal has visited but not suffered

recent territorial encounters. Additionally, the spatial range over which ani-

mals make decisions to move is key to understanding the size and shape of

their resulting territories. Analysis using energy methods, on a simplified

version of our system, shows that stability in the nonlinear system corre-

sponds well to predictions of linear analysis. We also uncover a hysteresis

in the process of territory formation, so that formation may depend crucially

on initial space-use. Our analysis, in one dimension and two dimensions,

provides mathematical groundwork required for extending MHRA to

situations where territories are defended by direct encounters.
1. Introduction
Territorial conflicts occur in many different animal species, from birds to primates,

insects to reptiles [1–4]. They sometimes take the form of physical fights, e.g. for

monkeys [5] and humans [6,7]. However, to avoid costly injuries, animals

often eschew fighting in favour of ‘ritualized aggression’, expressing dominance

through displays, vocalizations and other non-violent interactions [8]. For

example, ritualized aggression has been observed in many bird species, where plu-

mages have often evolved to aid in displays of territorial dominance [9–11].

Likewise, bees have been observed to perform ‘perching and patrolling’ displays

to highlight their territories [3]. In some cases, the line between non-violent and

violent can become blurred, when ritualized displays turn into violent encounters

(e.g. [2]). Nonetheless, be they violent or ritualized, the aim of territorial conflicts

is to gain and defend parts of space for exclusive use by a select subset of the popu-

lation, such as a flock, pack, tribe, nation or mating pair. Although aggressive

interactions are sometimes non-territorial, here we focus on those that are, so

may result in patterns of spatial segregation: interlocking territories that remain

relatively stationary over time [12].

In this paper, we show mathematically how the process of territorial con-

flicts may give rise to spatial segregation patterns, and under what

conditions these patterns may emerge or break down. This builds upon an

established body of work on territorial pattern formation and home range

analysis in scent-marking animals [13–15], which has been fruitful for accurate

capture of home range patterns [16], predicting changes in territorial structure

[17–19] and uncovering environmental drivers of spatial patterns [19,20]. How-

ever, such ‘mechanistic home range analysis’ (MHRA) studies all rely on there

being a process of indirect interaction, whereby individuals mark the area

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2016.0059&domain=pdf&date_stamp=2016-05-04
mailto:j.potts@sheffield.ac.uk
http://dx.doi.org/10.1098/rsif.2016.0059
http://dx.doi.org/10.1098/rsif.2016.0059
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org/


Table 1. Glossary of symbols. Note that some symbols are used either as
dimensional quantities or their dimensionless equivalents, depending on
the context (see §2.1.4).

symbol definition model

n arbitrary lattice site discrete

s arbitrary time step discrete

t length of a single time step discrete

l lattice spacing discrete

Ki(n,s) probability that n is in agent i’s

conflict zone (CZ) at time s

discrete

�K iðn, sÞ spatially averaged CZ discrete

Ui(n, s) probability that agent i is at site n

at time s

discrete

rt,1 probability that conflict occurs when

agents meet

discrete

bl rate at which CZ decays due to

agents visiting without conflict

discrete

h number of lattice sites for spatial discrete
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throughout their terrain and then other individuals react to

those marks. As noted in recent reviews [14,21], this con-

straint greatly limits the potential use of MHRA, as many

populations instead use combats or ritualized aggression

for territorial defence.

Here, we remedy this shortcoming by focusing on direct
interactions (which we term ‘conflicts’), which of necessity

can only occur at points on the borders between territories.

Indeed, although MHRA has been used for understanding

spatial structures of human gangs [4], where graffiti marking

is used as a proxy for scent marking, that study also noted

that direct confrontations between gangs may be influential

in determining spatial structure. Similarly, the study of Potts

et al. [22] demonstrated that memory of neighbouring vocaliza-

tions in bird populations may be modelled in an analogous

way to scent-marking in canid populations. Yet, those bird

populations are also known to engage in ritualized aggression

for the purposes of territorial defence [23]. Therefore, both

Smith et al. [4] and Potts et al. [22] would be improved by

mechanistic models of direct territorial interactions. In general,

by bringing direct interaction processes into the framework of

MHRA [13,14], this paper expands the range of possible

species and populations that may be studied using MHRA.
averaging

d perceptual radius of agent discrete

q strength of tendency to move away

from CZ

discrete

m decay rate of CZ due to finite

memory

both

x and t space and time, respectively continuous

r rate at which conflicts occur when

animals meet

continuous

b rate at which CZ decays due to

agents visiting without conflict

continuous

ki(x,t) probability that x is in agent i’s

conflict zone at time t

continuous

�kiðx, tÞ spatially averaged conflict zone continuous

ui(x,t) probability density of agent i at time

t

continuous

d perceptual radius of agent continuous

c magnitude of advection continuous

D diffusion constant continuous

L width of terrain in 1D model continuous

m composite parameter mL2/r continuous

a composite parameter D/r continuous

b composite parameter bL/r continuous

g composite parameter c/D continuous
2. The model
We begin with some terminology, not intended to be defini-

tive, but introduced purely for the purposes of this paper.

Animals may move by themselves or as clusters of individ-

uals (e.g. a pack or a flock), so we use the term ‘agent’ to

mean either a lone-moving individual, or a cluster of individ-

uals moving together. By ‘territorial conflict’, we mean any

direct interaction that seeks to exclude certain agents from

an area of space. For example, a territorial conflict could

mean a physical fight, or a display of ritualized aggression.

To perform mathematical analysis, we start by describing

a model of two agents living on a line segment. This analysis

allows us to gain a rigorous understanding of the conditions

under which territories can form. This understanding is then

carried over into the more realistic two-dimensional (2D) situ-

ation, where we perform simulation analysis to provide

evidence that our model can give rise to territory formation.

2.1. The one-dimensional model
First, we describe the model in discrete space and time, and

then take the continuum limit. Let t be the time between con-

secutive time steps and l the lattice spacing. We work on a

one-dimensional (1D) line lattice. Parameters used in the

model are listed in table 1.

2.1.1. The conflict zone
Roughly speaking, we wish say that the agent’s ‘conflict

zone’ is the place where it has a reasonably high expectation

of experiencing a territorial conflict. Conflicts can only

happen if agents are in the same place at the same time. So

suppose that agents 1 and 2 meet at a lattice site n at time

step s, and that rt,l is the probability that a conflict occurs

during this time step. Then n becomes part of the conflict

zone during this time step with probability rt,l.

As time passes without conflicts at point n, each agent

gradually begins to view the point as being a less dangerous
place to venture. This is bolstered by any visits it makes to n
that do not result in a conflict. We model this by assuming

that during a time step, the probability of site n being in

the conflict zone changes by a factor of either 1 2 mt if the

agent does not visit n, or 1� ðmþ blÞt if the agent does

visit n, where m, bl . 0: Here, m models the memory decay

of a conflict site that it has not visited for some time, while

http://rsif.royalsocietypublishing.org/
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bl models the increase in expected safety incurred by visiting

a site and not experiencing a conflict there. In summary, if we

let Ki(n, s) be the probability that site n is in the conflict zone

of agent i at timestep s, for i [ f1, 2g, then

Kiðn, sþ 1Þ

¼

1� mt

with probability rt;l, if

agents 1 and 2 are at

site n at time-step s,

½1� ðmþ blÞt�Kiðn, sÞ in any other situation where

agent i is at site n,

ð1� mtÞKiðn, sÞ otherwise:

8>>>>>>>><
>>>>>>>>:

ð2:1Þ
Interface
13:20160059
2.1.2. A model of agent movement
As with the conflict zone, we begin by describing the agents’

movement in discrete space and time. Each agent has a diffu-

sive (i.e. random walk) aspect to its motion, to account for

those aspects of movement within the territory that we are

not explicitly modelling, such as foraging. It also has a ten-

dency to move away from areas that are more likely to be

part of the conflict zone and towards areas that are less

likely to be in the conflict zone, which we model by biasing

the random walk accordingly.

As an agent makes its decision to move, it will examine

the area in its immediate vicinity, according to its perceptual

capabilities. In other words, it makes its decision based on

an average over certain nearby lattice sites. To be specific,

we assume the probability of moving right (respectively,

left) is determined by averaging the conflict zone over the

2h þ 1 lattice sites centred d lattice sites to the right (respect-

ively, left) of its location, where h � 0, d � 1 are integers.

Therefore, we define the locally averaged conflict zone as

follows:

�Kiðn, sjhÞ ¼ 1

2 hþ 1

Xnþh

n0¼n�h

Kiðn0, sÞ: ð2:2Þ

We then define the probability, fiðnjn0, h, dÞ, of agent i
moving to a lattice site n, given that it was at site n0 in the

previous time step, and given values of h and d, to be

fiðnjn0, h, dÞ

¼

1

2
[1þ q�Kiðn0 þ d, sjhÞ � q�Kiðn0 � d, sjhÞ] if n ¼ n0 � 1,

1

2
[1� q�Kiðn0 þ d, sjhÞ þ q�Kiðn0 � d, sjhÞ] if n ¼ n0 þ 1,

0 otherwise,

0
BBB@

ð2:3Þ

where q [ ð0, 1Þ denotes the strength of bias away from the

conflict zone.
2.1.3. The continuum limit
One way to analyse the model given in equations (2.1) and

(2.3) would be by performing stochastic simulations of the

system. To gain mathematical insight, however, it is con-

venient to take a continuum limit in both space and time.

This leads to the following system of partial differential

equations (PDEs), defined on an interval [0, L], for i ¼ 1, 2

(see the electronic supplementary material, appendix A for
a derivation):

@ui

@t
¼ D

@2ui

@x2
þ c

@

@x
ui
@�ki

@x

� �
ð2:4Þ

and

@ki

@t
¼ ru1u2ð1� kiÞ � kiðmþ uibÞ: ð2:5Þ

Here, ui(x,t) is the position probability density for agent i at

time t, ki(x,t) is probability that position x is part of the con-

flict zone at time t, r ¼ limt!0ðrt;ll2=tÞ, b ¼ liml!0ðlblÞ,
D ¼ liml!0;t!0½l2=ð2tÞ� and c ¼ 4dqD.

In equation (2.4), �kiðx, tÞ is a local average of ki(x,t), given

as follows:

�kiðx, tÞ ¼

1

dþ x

ðd
�x

kiðxþ z, tÞdz if 0 , x , d,

1

2d

ðd
�d

kiðxþ z, tÞdz if d,x , L� d,

1

dþ L� x

ðL�x

�d
kiðxþ z, tÞdz if L� d , x , L,

0
BBBBBBB@

ð2:6Þ

where d ¼ liml!0;h!1ðlhÞ: This local averaging arises from the

biological considerations regarding the animal’s perceptual

capabilities, described at the start of §2.1.2. The precise math-

ematical form emerges from the limiting process given in the

electronic supplementary material, appendix A.

Finally, we impose the following boundary and integral

conditions, respectively (see the electronic supplementary

material, appendix A for details):

D
@ui

@x
þ cui

@�ki

@x

� �����
x¼0

¼ D
@ui

@x
þ cui

@�ki

@x

� �����
x¼L
¼ 0 ð2:7Þ

and ðL

0

uiðx, tÞ dx ¼ 1: ð2:8Þ
2.1.4. A dimensionless version of the model
To reduce the number of parameters in the system, we intro-

duce the following dimensionless variables:

~x ¼ x
L

, ~t ¼ tD
L2

, ~uið~x, ~tÞ ¼ Luiðx, tÞ, ~kið~x, ~tÞ ¼ kiðx, tÞ

and ~d ¼ d

L
, m ¼ mL2

r
, a ¼ D

r
, b ¼ bL

r
, g ¼ c

D
:

9>>>=
>>>;
ð2:9Þ

Dropping the tildes over the letters to ease notation, we arrive

at the following dimensionless system of equations, which

will be the object of 1D mathematical analysis in this paper,

for i [ f1, 2g:

a
@ki

@t
¼ u1u2ð1� kiÞ � kiðmþ buiÞ, ð2:10Þ

@ui

@t
¼ @

2ui

@x2
þ g

@

@x
ui
@�ki

@x

� �
, ð2:11Þ

@ui

@x
þ gui

@�ki

@x

� �����
x¼0

¼ @ui

@x
þ gui

@�ki

@x

� �����
x¼1

¼ 0 ð2:12Þ

and ð1

0

uiðx, tÞdx ¼ 1, ð2:13Þ
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where the dimensionless version of �kiðx, tÞ is

�kiðx, tÞ ¼

1

dþ x

ðd
�x

kiðxþ z, tÞ dz if 0 , x , d,

1

2d

ðd
�d

kiðxþ z, tÞ dz if d , x , 1� d,

1

dþ 1� x

ðl�x

�d
kiðxþ z, tÞ dz if 1� d , x , 1:

0
BBBBBBB@

ð2:14Þ

Unless otherwise stated, all parameter values are assumed to

be non-negative.
2.2. The two-dimensional model
In two dimensions, we perform our analysis using the full,

individual-based, stochastic model, to verify that territorial seg-

regation occurs in the version of our model closest to reality.

Simulations are performed on a 25 � 25 square lattice with

reflecting boundary conditions, using four agents. At each

time step, an agent at lattice site n0 ¼ ðn01, n02Þ moves to one

of the four adjacent lattice sites with the following probabilities:
.R
.Soc.Interface
13:20160059
fiðnjn0, h, dÞ ¼

min 0:5, max 0,
1

4
(1þ q�Kiðn0 þ ðd, 0Þ, sjhÞ � q�Kiðn0 � ðd, 0Þ, sjhÞ)

� �� �
if n ¼ n0 � ð1, 0Þ,

min 0:5, max 0,
1

4
(1� q�Kiðn0 þ ðd, 0Þ, sjhÞ þ q�Kiðn0 � ðd, 0Þ, sjhÞ)

� �� �
if n ¼ n0 þ ð1, 0Þ,

min 0:5, max 0,
1

4
(1þ q�Kiðn0 þ ð0, dÞ, sjhÞ � q�Kiðn0 � ð0, dÞ, sjhÞ)

� �� �
if n ¼ n0 � ð0, 1Þ,

min 0:5, max 0,
1

4
(1� q�Kiðn0 þ ð0, dÞ, sjhÞ þ q�Kiðn0 � ð0, dÞ, sjhÞ)

� �� �
if n ¼ n0 þ ð0, 1Þ,

0 otherwise,

0
BBBBBBBBBBBBBB@

ð2:15Þ
where q . 0 and d is a positive integer. When q , 1, this is the

2D analogue of equation (2.3). We extend our model for use

when q � 1 for extra flexibility. Here, �Kiðn, sjhÞ is the 2D ana-

logue of equation (2.2), given as follows:
�Kiðn, sjhÞ ¼ 1

H

X
jn0�nj�h

Kiðn0, sÞ, ð2:16Þ
where H is the number of elements in the set fn0:jn0 � nj � hg
and Ki(n, s) is the probability that n is in the conflict zone of

animal i at time step s. The evolution of Ki(n, s) is given by the

following iterative equation (see equation (2.1) for the 1D

version):
Kiðn, sþ 1Þ

¼

1� mt

with probability rt;l, if

agents i and j are at

site n at time-step s,

for some j= i,
½1� ðm� blÞt�Kiðn, sÞ in any other situation where

agent i is at site n,

ð1� mtÞKiðn, sÞ otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

ð2:17Þ

We begin simulations with Ki(n, s) ¼ 0 for every lattice

site n and place individuals uniformly at random on the lat-

tice grid. We allow 100 000 time steps ‘burn-in’ for the conflict

zones to form, then run the simulations for a further 100 000

time steps to obtain the agents’ utilization distribution. It

turns out that, for the parameter values we tested, running

the simulations for longer does not yield qualitatively signifi-

cant change in the agents’ utilization distribution (electronic

supplementary material, figure S3).
3. Model analysis and results
3.1. Linear stability analysis
We use linear stability analysis to ascertain the conditions under

which patterns may be expected to form in the 1D system

described by equations (2.10)–(2.13) (e.g. [24], ch. 2). Owing to

the integral conditions (equation (2.13)), the constant steady

state for ui(x, t) is ui�ðxÞ ¼ 1. The constant steady state ki�ðxÞ
for ki(x, t) is calculated by setting equation (2.10) to zero so that

u1�ðxÞu2�ðxÞ½1� ki�ðxÞ� ¼ ki�ðxÞ½mþ bui�ðxÞ�: ð3:1Þ

Plugging in the constant solution ui*(x) ¼ 1 into equation

(3.1), we find that k1�ðxÞ ¼ k2�ðxÞ ¼ kc, where

kc ¼
1

mþ bþ 1
: ð3:2Þ

To linearize about this steady state, we define

w ¼ ðû1, û2, k̂1, k̂2Þ ¼ ðu1 � 1, u2 � 1, k1 � kc, k2 � kcÞ: ð3:3Þ

We look for solutions of the form

w ¼ ðu1;0, u2;0, k1;0, k2;0Þ expðstþ ikxÞ: Then equations (2.10)–

(2.11) imply the following linearized system of equations (as

is standard, e.g. [24], ch. 2):

Aw ¼ sw ð3:4Þ

and

A¼

�k2 0 �gk

d
sinðkdÞ 0

0 �k2 0 �gk

d
sinðkdÞ

m
ðmþ bþ 1Þa

mþ b
ðmþ bþ 1Þa �

mþ bþ 1

a
0

mþ b
ðmþ bþ 1Þa

m
ðmþ bþ 1Þa 0 �mþ bþ 1

a

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð3:5Þ

To determine whether patterns form in this system, we

examine the dispersion relation. This plots the largest real

http://rsif.royalsocietypublishing.org/
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Figure 1. Dispersion relations. Here, we examine the effect of each of the five parameters a, b, g, d, m on the dispersion relation for the system of equations
(2.10) – (2.13). For panels (a – e), unless otherwise stated in the figure legend, a ¼ 0.01, b ¼ 1, g ¼ 10, d ¼ 0.05, m ¼ 0. In panel ( f ), we examine the
possibility of pattern formation when b ¼ 0. Here, a ¼ 0.1, m ¼ 0.1, g ¼ 100 and d varies according to the figure legend. See the electronic supplementary
material, appendix B for an explanation of this choice of parameter values.
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value of s as a function of the wavenumber k, whenever

det(A 2 sI) ¼ 0. If the set of k-values for which the curve

lies above the axis is non-empty, then patterns may form

with period 2p/k from small perturbations of the constant

steady state, for any k in this set. Figure 1 shows the dis-

persion relation for various values of the parameter space

(a, b, g, d, m). Though this five-dimensional space is too
large to study exhaustively, we can ascertain certain general

properties by varying one parameter at a time.

Figure 1a,b examines the effects of varying two aspects of

the conflict zone decay: that which is proportional to the pos-

itional probability of the agent (b) and that which is not (m). If

either m is too high or b is too low, then patterns cannot form.

Therefore, the agents must have some process whereby they

http://rsif.royalsocietypublishing.org/
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feel safer in places they have visited and not had territorial con-

flicts, so are less likely to view those places as part of the

conflict zone. Moreover, this process must be relatively strong

compared with the agents’ tendency to forget about places they

have not visited for a while. In the electronic supplementary

material, appendix B, we show that if b¼ 0, then territories

cannot form for biologically realistic parameter values. Nonethe-

less, there are parameter values where we observe pattern

formation and some of these are explored in figure 1f (see also

the electronic supplementary material, appendix C).

Figure 1c shows that as d is decreased, the set of wave-

numbers at which patterns may form increases in size. At

the limit d! 0, where agents only react to the conflict zone

at the precise position they are located, patterns can form at

arbitrarily high wavenumbers, so the problem is ill-posed.

Therefore, it is necessary for territorial formation (in our

model) that agents have a non-vanishing perceptive radius

which they use to make movement decisions. Similar con-

ditions were discovered in the studies of Briscoe et al. [25]

and Potts & Lewis [26], regarding territorial scent-marking

processes in canid populations.

From figure 1d, we see that the parameter a, measuring

the relative effect of the agent’s diffusion constant compared

with the rate at which conflicts occur, appears to have no

effect on the set of wavenumbers for which patterns form.

However, the rate of growth of the resulting patterns is

higher when a is lower. Lastly, figure 1e shows that patterns

will only form if g, the ratio of the advection rate (away from

the conflict zone) to the diffusion rate, is sufficiently high.

3.2. Numerical analysis: patterns corresponding to
territories

Having shown that patterns should form for certain choices

of parameter values, we investigate whether the sort of pat-

terns that correspond to territories may form in our system.

Such patterns should result in u1(x) being predominantly con-

centrated on one side of the interval [0,1] with u2(x) on the

other side. The steady state of equations (2.10)–(2.13) is a

system of (ordinary) integro-differential equations that is

too complicated for exact mathematical analysis. (That this

is a system of integro-differential equations can be seen by

expanding the �ki term in equation (2.11) using equation

(2.14).) Therefore, we analyse this system numerically, using

the method of false transients [27]. Details of the algorithm

are in the electronic supplementary material, appendix D.

Numerical analysis reveals that patterns can form that

look qualitatively like territories for certain parameter

values (figure 2 and table 2). This analysis allows us to

observe the qualitative effects of varying various parameters.

By comparing figure 2a with b, we see that a lower perceptual

range (d) of the agent results in sharper territorial boundaries.

Figure 2c shows that a lower drift tendency (g) away from the

conflict zone leads to less well-defined territories, with the

position density being above about 0.1 across the whole

range of the terrain (as compared with figure 2a where the

drift tendency is higher). Similarly, comparing figure 2d
and a shows that a tendency for the agents to forget about

conflicts in areas they have not recently visited (m . 0)

leads to less well-defined territories.

Comparing figure 2a,e, we see that lowering b, the ten-

dency for animals to feel safer in areas that they have

recently visited and not had a conflict, leads to steeper
sides of the conflict zone, and a reduced overall population

density (i.e. lower u1(x) þ u2(x)) in the centre of the territory.

This reduced population density is analogous to the ‘buffer

zones’ observed in [28], which can give a safe area for prey

to exist between territories of predators. Finally, comparing

figure 2f to a, we see that changing a (the relative effect of

the agent’s diffusion constant compared with the rate at

which conflicts occur) has no effect on the resulting territorial

patterns, as one would expect since a vanishes when the

left-hand sides of equations (2.10)–(2.11) are set to zero.

3.3. Numerical analysis: transient dynamics
Although steady-state analysis is mathematically convenient

and gives insight into the conditions under which territorial

patterns may form, often natural systems are observed in a

transient state away from equilibrium [18,29]. Therefore, it

is important to examine the profile of the agents’ utilization

distributions before they have had time to reach a stable state.

In the system studied here (equations (2.10)–(2.13)), the

distributions of both the agents and the conflict zones have

a rather interesting trajectory towards the steady state

(figure 3). As the conflict zones emerge, they are initially

almost identical in shape (figure 3a). Then they separate as

each agent becomes more familiar with its side of the terrain

(figure 3b,c). Eventually, patterns form that look somewhat

like territories (figure 3d ), but there is a relatively large prob-

ability of being found anywhere on the terrain compared

with the eventual steady state. Next, the agents develop a ten-

dency to spend time close to the territory boundary

(figure 3e) causing the borders to sharpen. Once the borders

have become sufficiently steep so that intrusion of agent 1 to

the right-hand side (or agent 2 to the left-hand side) is very

unlikely, the probability density within each territory flattens

out to reveal a pattern similar to the eventual steady state

(figure 3f ). It is interesting to note that these varied dynamics

occur as an outcome of behavioural rules that are,

themselves, fixed through time.

3.4. Mathematical analysis when d! 0: an energy
method

Though the results of §3.1 suggest that patterns can form at

arbitrary high wavelengths in the limit d! 0, in this case

the system is simple enough to perform some mathematical

analysis. As d! 0, the locally averaged integral �ki (equation

(2.14)) tends to ki, so the system from equations (2.10)–

(2.13) becomes

a
@ki

@t
¼ u1u2ð1� kiÞ � kiðmþ buiÞ, ð3:6Þ

@ui

@t
¼ @

2ui

@x2
þ g

@

@x
ui
@ki

@x

� �
, ð3:7Þ

@ui

@x
þ gui

@ki

@x

� �����
x¼0

¼ @ui

@x
þ gui

@ki

@x

� �����
x¼1

¼ 0 ð3:8Þ

and ð1

0

uiðx, tÞ dx ¼ 1: ð3:9Þ

Note that these equations are identical to equations (2.10)–

(2.13), except that the advection term in equation (3.7) con-

tains the function ki in place of the function �ki from

equation (2.11).
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Figure 2. Numerical solutions corresponding to territories. Here, numerical steady-state solutions to equations (2.10) – (2.13) are plotted. The respective parameter
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In this section, we analyse the system in equations (3.6)–(3.9)

in the particular case where a, m¼ 0 and u1(x, t) þ u2(x, t)¼ 2.

Note that a ¼ 0 means, in essence, that the conflict zones (ki)
reach equilibrium much faster than the probability distributions

of the individuals (ui). With these assumptions in place, the

problem turns out to be simple enough for analysis of the full,

http://rsif.royalsocietypublishing.org/


Table 2. Parameter combinations from figure 2.

case panel in figure 2 d g m b a

base case a 0.05 10 0 1 0.01

increased spatial averaging b 0.1 10 0 1 0.01

less advection c 0.05 5 0 1 0.01

higher memory decay rate d 0.05 10 0.5 1 0.01

reduced safety from re-visits e 0.05 10 0 0.2 0.01

greater diffusion/conflict-rate ratio f 0.05 10 0 1 0.1
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time-dependent system,sowe can gain some analytic insight into

the features we have so far observed by linear analysis and

numerics.

Plugging a, m ¼ 0 and u1(x,t) þ u2(x,t) ¼ 2 into equation

(3.6), we can write ki in terms of ui as follows, for i ¼ 1, 2:

ki ¼
2� ui

bþ 2� ui
: ð3:10Þ

This means that equation (3.7) becomes

@ui

@t
¼ @

@x
@ui

@x
þ gui

@

@x
2� ui

bþ 2� ui

� �� �
: ð3:11Þ

A direct calculation shows that equation (3.11) is equivalent

to

@ui

@t
¼ @2

@x2
[fðuiÞ], ð3:12Þ

where

fðuiÞ ¼ ui � gb lnðbþ 2� uiÞ �
gbðbþ 2Þ
bþ 2� ui

: ð3:13Þ

From this, we construct an ‘energy’ functional

EðuiÞ ¼
ð1

0

FðuiÞ dx, ð3:14Þ

where F(ui) is the anti-derivative of f(ui), i.e.

dF

dui
ðuiÞ ¼ fðuiÞ: ð3:15Þ

The reason for constructing the functional E(ui) is that it

turns out to be a decreasing function of time, whose steady

state occurs when the PDE in equation (3.11) is at steady

state. To see this, observe the following calculation:

dE
dt
¼
ð1

0

@

@t
½FðuiÞ� dx

¼
ð1

0

@ui

@t
fðuiÞ dx

¼
ð1

0

fðuiÞ
@2

@x2
½fðuiÞ� dx

¼ fðuiÞ
@f

@x

� �1

0

�
ð1

0

@f

@x

� �2

dx

¼ �
ð1

0

@f

@x

� �2

dx, ð3:16Þ

where the third equality comes from equation (3.12) and the

fifth from the zero-flux boundary conditions (equation (3.8)).

Note that the last term in equation (3.16) is always non-

positive and is zero precisely when the flux, �@f=@x, is

zero. Now, if equation (3.11) is at steady state, then the flux
is constant across space, say �@f=@x ¼ C: However, because

the flux is zero at the boundaries (x ¼ 0, 1), C must be zero.

Thus, the flux is zero if and only if equation (3.11) is at

steady state. Hence, by (3.16), E(ui) decreases over time

unless equation (3.11) is at steady state. If the minima of

E(ui) are finite, then E(ui) is bounded below and so the

system will tend towards one of the minima as t!1.

These minima can therefore be used to describe the eventual

state of the system in equations (3.6)–(3.9). This approach is

similar to that of Lyapunov’s method for partial differential

equations (e.g. [30]).

For the purposes of this paper, we are particularly inter-

ested in minima that correspond to territories. We show in

electronic supplementary material, appendix E that when

m ¼ 0, classical, steady-state solutions to equations (3.6)–

(3.9) must be constant. Hence weak steady-state solutions to

equations (3.6)–(3.9) must be constant except possibly at a

set of values with measure zero. As such, solutions that corre-

spond to territories, i.e. with most of the density of the steady-

state u1* concentrated on one side and most of the density of

u2* on the other side, are such that u1�ðxÞ ¼ h, u2�ðxÞ ¼ z for

0 � x , 1=2 and u1�ðxÞ ¼ z, u2�ðxÞ ¼ h for 1=2 , x � 1:

Furthermore, by the integral condition in equation (3.9),

we must have z ¼ 2� h: It follows that the local minimum

energy solutions occur for values of h that minimize the

following function, for 0 � h � 1:

EðhÞ ¼ Eðu1�Þ ¼
1

2

h2

2
þ gbð2bþ 4� hÞ lnðbþ 2� hÞ

�

�gbðbþ 2� hÞ
i

þ 1

2

ð2� hÞ2

2
þ gbð2bþ 2þ hÞ lnðbþ hÞ � gbðbþ hÞ

" #
:

ð3:17Þ

Since b � 0 and 0 � h � 1, we have lnðbþ 2� hÞ . �1 and

lnðbþ hÞ . �1, so that EðhÞ is finite. Thus, E(ui) is bounded

below so the system does, indeed, tend towards a finite-

valued minimum.

Analysing equation (3.17) numerically for various values of

b and g, we find that minima occur either when h ¼ 0 or h ¼ 1.

The minimum h ¼ 0 gives the following (weak) solution:

u1�ðxÞ ¼ 0, u2�ðxÞ ¼ 2, if 0 � x ,
1

2

and u1�ðxÞ ¼ 2, u2�ðxÞ ¼ 0, if
1

2
, x � 1,

9>>=
>>; ð3:18Þ

which corresponds to territory formation. The h ¼ 1 case

means that u1�ðxÞ ¼ u2�ðxÞ ¼ 1 for all x [ ½0, 1�, so that

territories do not form.
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Interestingly, for certain values of b and g, there are minima

at both h ¼ 0 and h ¼ 1. This is an example of hysteresis, where

territories only form if the initial conditions are sufficiently

close to those in equation (3.18), but if initial conditions are

close to a constant solution, then territories are not predicted

to form. The regions of (b,g)-space where we see territories,

no territories or both (hysteresis) are shown in figure 4a.

In figure 4b, these regions are compared with the

regions where linear stability analysis predicts that small
perturbations from the constant steady state will grow to

non-constant patterns. Despite the various simplifying

assumptions made in our energy-functional analysis, the

results correspond almost identically to those from linear

stability analysis of the full system. Furthermore, they

suggest the places where the initial condition can have an

effect on the appearance of territorial patterns, and so ter-

ritories may exist in situations where the constant steady

state is stable.

http://rsif.royalsocietypublishing.org/


20

15

territories

no territories
hysteresis

unstable

stable

10g

b b

5

0 0.5 1.0 1.5 2.0

20

15

10

5

0 0.5 1.0 1.5 2.0

(a) (b)

Figure 4. Predictions of territorial structures. Panel (a) gives the regions of (b,g)-space where the (nonlinear) energy method (§3.4) predicts that territories should
either form spontaneously (top-right region), decay to the constant steady state (bottom-left), or where the existence of territories depends upon the initial con-
ditions (labelled ‘hysteresis’). Here, we assume a, m ¼ 0 and d! 0. Panel (b) shows the predictions of territory formation from linear analysis of the full system
(equations (2.10) – (2.13)). In the ‘stable’ region, the analysis predicts that territories should not form from small perturbations of the constant steady state, whereas
they may form in the ‘unstable’ region. In this case, m ¼ 0 but the values of a and d do not affect whether patterns will form for some wavenumber (figure 1c,d).

0.8

0.8

0.6

0.6

0.4

0.4

po
si

tio
n,

 y

position, x position, x position, x

0.2

0.2

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

(a) (b) (c)

Figure 5. Two-dimensional territories from stochastic IBM. Panel (a) shows four utilization distributions that emerge from stochastic simulations when d ¼ 5, h ¼ 5
and q ¼ 3. Panel (b) shows the effect of reducing the agents’ speed of retreat from conflict zones, by reducing q to q ¼ 2 and keeping the other parameters constant.
Panel (c) has d ¼ 2, h ¼ 2, q ¼ 3, showing that by reducing the scale over which animals make movement decisions can cause greater territorial fragmentation.
Contours are drawn at heights 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, from outer to inner. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160059

10

 on March 21, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
3.5. Simulation analysis in two dimensions
Figure 5 shows the results of 2D simulation analysis where

r ¼ 1, b ¼ 0.1 and m ¼ 0. Note that by decreasing the par-

ameter q, representing the strength of tendency to retreat,

territories have greater overlap (see also the electronic sup-

plementary material, figure S4). By decreasing d and h, the

scale over which animals make movement decisions, terri-

tories become fragmented and less well defined (see also

the electronic supplementary material, figure S5). This

accords with our observation from 1D linear stability analysis

that a lower spatial averaging means the system is susceptible

to instabilities at higher wavelengths (figure 1c).
4. Discussion and conclusion
The aim of this paper is to show mathematically how territor-

ial patterns can form from processes of direct interaction

between animals. The reason behind studying this is to pro-

vide necessary mathematical background for extending the
tools of MHRA [13,14] beyond the confines of scent-marking

animals, for use with the many species that use direct inter-

actions, such as ritualized aggression, to demarcate

territories. We have shown that territories can form from

such interactions if the following processes are present:

— spatial memory of both past territorial conflicts (encoded

in ki(x, t)) and places where such conflicts have not

recently occurred (encoded in the parameter b),

— a tendency to move away from places where territorial

conflicts have recently occurred, and

— a reaction to spatial location averaged over a non-

vanishing area centred on the animal.

Recently, spatial memory has been hypothesized as a

key process behind many behavioural features in animal

populations [31]. This is bolstered by copious studies

of neurological ‘place cells’, which have explained the

physiological processes underlying spatial memory in

many animals (e.g. [32–34]). Therefore, it is reasonable

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160059

11

 on March 21, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
to expect that such memory processes are at play in

territorial formation.

Likewise, the other two above-listed processes are likely

to be typical in most populations of territorial animals. The

tendency to move away from the conflict zone is perhaps

the most well-established process behind territory formation.

For example, Wilson [35] defines the process of territorial

defence as a ‘means of repulsion through overt defense or

advertisement’ and Adams [12] explains how this has

become a defining idea in territorial understanding.

The requirement for spatial averaging by an animal decid-

ing where to move is less well documented, perhaps because

it is taken as given that animals make movement decisions

based on their immediate surroundings, not just their exact

location. Nonetheless, many continuous-space models make

the mathematical simplification that interactions only take

place between the animal and its precise current location.

This can lead to reasonable results in certain situations

[17,28,36], but some studies have found that this simplifica-

tion can dramatically change the nature of observed

patterns [25,26]. The results here provide another example

of this latter phenomenon.

We also demonstrate the possibility of a territorial hyster-
esis phenomenon occurring in animal populations (e.g.

figure 4). Biologically, this means that animals need to have

a certain set of behavioural properties to form territories

(encoded in the parameters b and g), but can relax them

slightly once territories have formed and still maintain the

territorial structure. Therefore, it is possible that animals exhi-

bit slightly different territorial behaviour when forming new

territories from that in situations where territorial borders

have already been established. Such a phenomenon has

been observed in a system of scent-marking animals (urban

foxes), who respond to changes in territorial structures by

altering their scent-marking behaviour [18]. We are, however,

unaware of any similar studies regarding animals who

perform ritualized aggression to demarcate territories.

The success of MHRA in shedding light on various spatial

phenomena in ecology is well documented (see [14], for a

recent review). However, its reliance on scent-marking and

analogous processes of indirect interaction has been a severe

limitation until now. The results from this study give the fra-

mework to make this extension, by explaining what processes

need to be included in a model of territory formation from
direct interactions. To apply this framework to positional

data, one would either fit the steady-state solution of the

2D model to relocation data, using the techniques in [13],

or parametrize the model from fine-scale movement, similar

to the techniques described in [22]. Because the patterns

that arise from direct interactions may be very similar to

those from indirect ones, we would generally advocate

using the latter, fine-scale techniques (or similar, e.g. [37]).

On the scale of behavioural decisions, the difference between

the two types of interaction (direct and indirect) is likely to be

clearer than on the scale of long-term territorial patterns.

A programme of research that moves from mathematical

analysis to data-driven studies has been successful for under-

standing scent-marking animals, as evidenced by initial

papers containing 1D analysis [28,38] paving the theoretical

groundwork for novel insights into real 2D systems

[16,17,19]. We have thus followed suit for our study of

direct interactions. However, as well as applications to real

systems, there is also room for future mathematical investi-

gation of more complicated, multi-agent, 2D systems of

direct interactions. Furthermore, this study assumes that all

agents in the system act in the same way, but this is often

not true for real animal populations. It would be interesting

for future investigations to modify the system to incorporate

unequal agents, investigating the varying strategies that may

be more or less beneficial for territorial gains, given different

behavioural traits. Given the wide range of species that use

direct interactions to determine territorial segregation,

together with the well-developed statistical techniques for fit-

ting positional data to such models, we hope that the

modelling ideas presented here will have broad application

to many situations in spatial ecology.
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